Friday, December 18, 2009

The beginning

So in the beginning there were a lot of struggles.
It was extremely difficult for us (and I think this applies to all the groups) to focus in on what they wanted their project to be.
Every week we would come up with ideas and then feel completely shot down by the end of class on Friday. Every week we felt like we had to start over again.
Week 1: Very basic brainstorming. We hared our interests, aspirations, topics we thought could evolve into interesting projects. Some of the outcomes were projects that interacted with all five senses, projects that improved the quality of life, or tried to conserve resources (our main interest was water). The project evolved into a water purifying system using algae that could fuction both inside and outside. A sort of cubicle system in the Duderstadt center that housed living algae. After further discussion, however, this idea seemed implausible because of the enormous amount of energy that would have to be put into the upkeep of such a system.
Week 2: Microlittering was brought up in one of the meetings and we became interested in a way of either collecting or bringing attention to this problem. The proposal became a collecting bin for microlitter that attempted to harvest energy from burning cigarette butts that were stuck into little slots. By using thermoelectrics we could harvest energy from the burning cigarettes, have algae purifying the air to reduce second hand smoke, and at the same time purify water to dispense to the smoker when he had finished smoking.
Week 3: Proposal shot down by professors again, we go back to the drawing board. An email redefining, or grounding project guidelines was sent out. And the group decided to use kinetic sculptures such as the wooden mirror as inspiration to create a moving array of solar panels. Using mirrors, pistons, and solar panels, we envisioned an array that could be controlled by people moving parabolic mirrors along its surface, sensors picking up the increase in light from the mirrors focusing extra sunlight on them, and then moving according to that stimulus.
g this.

Week 4: None of the professors seemed necessarily excited about this idea either, so we had to redefine once again. We had another major brainstorming session. I suggested we start by writing down everything that was wrong with current solar panels. The list looked something like this: flat, dark, fixed location (which is usually inaccessible), fragile, expensive, not visually pleasing. We became very interested in using fragile unprotected solar cells and finding a way to still use them efficiently in a solar array by finding a way to protect them from the elements. Flipping seemed the most logical way of doinfl
Week 4: Starting to grab hold of something. Finally. So this project was going to be a solar array. The panels would have to be symmestrical if they weren't going to run into one another as they ipped. Chris and Mat and I sat down several times discussing this. A wavelike shape seemed the most logical, not only because of its easy implementation in a flipping mechanism but also because it would go well with the wave-like motion we wanted our array to perform.

No comments:

Post a Comment